An Effective Approach to Detect Lesions in Color Retinal Images

نویسندگان

  • Huan Wang
  • Wynne Hsu
  • Kheng Guan Goh
  • Mong-Li Lee
چکیده

Diabetic-related eye diseases are the most common cause of blindness in the world. So far the most effective treatment for these eye diseases is early detection through regular screenings. To lower the cost of such screenings, we employ state-of-the-art image processing techniques to automatically detect the presence of abnormalities in the retinal images obtained during the screenings. In this paper, we focus on one of the abnormal signs: the presence of exudates/lesions in the retinal images. We propose a novel approach that combines brightness adjustment procedure with statistical classification method and local-window-based verification strategy. Experimental results indicate that we are able to achieve 100% accuracy in terms of identifying all the retinal images with exudates while maintaining a 70% accuracy in correctly classifying the truly normal retinal images as normal. This translates to a huge amount of savings in terms of the number of retinal images that need to be manually reviewed by the medical professionals each

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

ارایه مدلی از شبکه‌های عصبی خودسازمان‌ده سلسله مراتبی در جهت تشخیص و طبقه‌بندی ضایعات شبکیه برای درجه‌بندی رتینوپاتی دیابتی

Background: One common symptom of diabetes is diabetic retinopathy, if not timely diagnosed and treated, leads to blindness. Retinal image analysis has been currently adopted to diagnose retinopathy. In this study, a model of hierarchical self-organized neural networks has been presented for the detection and classification of retina in diabetic patients. Methods: This study is a retrospective...

متن کامل

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

Automated Localization of the Optic Disc in Retinal Images Using Top Hat Transform Algorithm

In Diabetic retinopathy, early detection as well as periodic screening helps in reducing the progress of disease and in preventing the subsequent loss of visual capability. The system extracts some retinal features, such as optic disc, retinal tissue for easier segmentation of dark spot lesions in the fundus images. To improve the detection optic disc in diabetic retinopathy image, a morphologi...

متن کامل

Detection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform

This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000